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Background: Accelerated telomere shortening may cause cancer via chromosomal instability, making it a poten-
tially useful biomarker. However, publications on blood telomere length (BTL) and cancer are inconsistent. We
prospectively examined BTL measures over time and cancer incidence.
Methods:We included 792 Normative Aging Study participants with 1–4 BTL measurements from 1999 to 2012.
We used linear mixed-effects models to examine BTL attrition by cancer status (relative to increasing age and
decreasing years pre-diagnosis), Cox models for time-dependent associations, and logistic regression for cancer
incidence stratified by years between BTL measurement and diagnosis.
Findings: Age-related BTL attrition was faster in cancer cases pre-diagnosis than in cancer-free participants
(pdifference= 0.017); all participants had similar age-adjusted BTL 8–14 years pre-diagnosis, followed by deceler-

ated attrition in cancer cases resulting in longer BTL three (p= 0.003) and four (p= 0.012) years pre-diagnosis.
Longer time-dependent BTL was associated with prostate cancer (HR = 1.79, p = 0.03), and longer BTL mea-
sured ≤4 years pre-diagnosis with any (OR = 3.27, p b 0.001) and prostate cancers (OR = 6.87, p b 0.001).
Interpretation: Age-related BTL attrition was faster in cancer cases but their age-adjusted BTL attrition began
decelerating as diagnosis approached. This may explain prior inconsistencies and help develop BTL as a cancer
detection biomarker.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Telomeres are tandem repeats of TTAGGG nucleotides at the ends of
eukaryotic chromosomes that, along with telomere binding proteins,
help maintain genomic stability (Ma et al., 2011). Studies show that
blood telomere length (BTL) decreaseswith age and that environmental
exposures causing oxidative stress and chronic inflammation accelerate
this process (Jennings et al., 2000; von Zglinicki, 2002). Shortened telo-
meres are often involved in cellular senescence or apoptosis. However,
tive Medicine, Northwestern
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if their shortening becomes critical, such biological responses can be
inhibited, resulting in genomic instability (Kong et al., 2013; Frias
et al., 2012) including chromosomal rearrangements, and both gains
and losses of chromosomal segments (Lundblad and Szostak, 1989),
all essential steps in carcinogenesis. For these reasons, telomeres have
long been an object of study for potential early involvement in cancer
development (Londono-Vallejo, 2008; DePinho, 2000). One major
weakness to tissue-specific telomere length in tumors is that it is only
measurable after disease development, and thus can be affected by
both cancer and treatment.

Blood leukocytes play an important role in carcinogenesis via in-
flammatory response and pro-apoptotic processes. Leukocyte infiltra-
tion is critical early in carcinogenesis and has been linked to many
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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cancers including pancreatic (Schnekenburger et al., 2008) and colorec-
tal (Ichikawa et al., 2011). Thus, studying BTL in DNA collected before
cancer development can provide important information on its role in
cancer etiology and serve a valuable predictive purpose. However, BTL
has been extensively studied in relation to cancer riskwith inconsistent
results (Hou et al., 2012a;Willeit et al., 2010). One possible explanation
is that most studies reporting shorter BTL in cancer patients relative to
controls are retrospective studies in which BTL was measured post-
diagnosis, a finding which could be a consequence of cancer develop-
ment or treatment, not a cause (Hou et al., 2012a). For example,
Unryn et al. showed that patients with neck and head tumors who
went through eight weeks of chemotherapy had a mean telomere
loss of 660 base pairs (Unryn et al., 2006). Results have also been
inconsistent in prospective studies where BTL was measured pre-
diagnostically, some reporting increased cancer risk in participants
with shorter BTL, and others with longer (Hou et al., 2012a). Most stud-
ies examined BTL at a single time point only, and none to our knowledge
measured BTL more than once before cancer diagnosis, making it diffi-
cult to examine the causal relationship betweenBTL attrition and cancer
risk. Longitudinal studies of BTL with multiple pre-diagnostic measure-
ments may be more informative about how BTL contributes to cancer
risk, and provide critical information on the relationship between BTL
and cancer development and diagnosis. Our objective is to examine
BTL attrition over time in relation to risk of developing cancer, specifi-
cally: 1) How BTL changes with time affect, and are affected by, cancer
development and 2) whether BTL measured prior to clinical diagnosis
is associated with risk of developing cancer.

2. Methods

2.1. Study Design and Participants

TheNormative Aging Study (NAS)was established by theUSDepart-
ment of Veteran Affairs (VA) in 1963 with an initial cohort of 2280
healthy men. Initial eligibility criteria at enrollment included veteran
status, residence in the Boston area, ages 21–80, and no history of
hypertension, heart disease, cancer, diabetes, or other chronic health
conditions. From 1963 to 1999, 981 participants died and 470 were
lost to follow up. Statistical comparisons between the remaining 829
participants and those lost to follow up revealed no significant differ-
ences in subject characteristics (age, BMI, etc.). Participants were
recalled for clinical examinations every 3–5 years. Starting in 1999,
these included 7-ml blood samples for DNA analysis. Between January
1st, 1999 and December 31st, 2012, 802/829 (96.7%) of active
participants agreed to donate blood. Our study population included par-
ticipants who had 1–4 clinical visits during which blood was collected,
and non-missing data for BTL from at least one of those visits, resulting
in a total population of 792. Of these, 227 (28.7%) participants had data
from one visit, 202 (25.5%) from two, 229 (28.9%) from three, and 134
(16.9%) from four. This study was approved by the Institutional Review
Boards of all participating institutions, and all participants provided
written consent.

2.2. Identification of Cancer Cases

Information on cancer diagnosis was obtained from questionnaires
and confirmed via review of medical records. Among the 792
participants, 213 were diagnosed with cancer (75 prostate, 97 skin, 41
other) before their first blood draw (baseline). After examining associa-
tions between BTL and prevalent cancers, these participants were
excluded, and subsequent analyses only examined pre-diagnostic BTL
measurements. Among the remaining 579 participants free of cancer
at baseline, 135 new cancer cases occurred (53 prostate, 42 skin, 10
lung, nine leukemia, five bladder, four colon, two stomach, two liver,
two pancreas, and six unspecified) during median 10.6 year follow-up.
Participants' mean age at diagnosis was 75.9 ± 6.6 years. Participants
who were cancer-free for the full duration of the study were censored
after their last recorded visit.
2.3. Telomere Measurement

BTL was measured using quantitative real-time polymerase chain
reaction (qPCR) (Cawthon, 2002). Relative BTL was measured by the
ratio of the telomere (T) repeat copy number to single-copy gene
(S) copy number (T:S ratio) in a given sample and reported as relative
units expressing the ratio between test DNA BTL and reference pooled
DNA BTL. The latter was created using DNA from 475 participants
randomly selected (400 ng per sample) and used to generate a fresh
standard curve from 0.25 to 20 ng/μL in every T and S PCR run. qPCR
primer sets for T and human beta-globin, taken as the reference S, as
well as qPCR mix composition were previously described (Hou et al.,
2009). We ran all samples in triplicate, and the average of the three T
measurementswas divided by the average of the three Smeasurements
to calculate the average T:S ratio. The intra-assay coefficient of variation
for the T/S ratio was 8.1%. The average coefficient of variation for the T
reaction was 8%, and for the S reaction was 5.6%. When the coefficient
of variation for T or S reactions was higher than 15%, the measurement
was repeated.
2.4. Statistical Analysis

After our initial descriptive analysis of BTL and subject characteris-
tics by visit, we performed a second descriptive analysis using a repeat-
ed measures study to examine associations between participant
characteristics at baseline and cumulative mean BTL (BTL averaged
across all visits) among cancer-free participants only. Next, we used
linear mixed-effects models to compare rates of BTL attrition over
time by cancer status (those who developed cancer at some point dur-
ing follow-up, and those who did not). BTL attrition rate was examined
relative to increasing age, and age-adjusted BTL attritionwas also exam-
ined relative to decreasing years pre-diagnosis (pre-censoring in the
case of cancer-free subjects). Next, we used Cox proportional hazards
regression models to estimate time-dependent associations between
BTL and time to diagnosis/censoring. Finally, based on our above
analysis, we performed logistic regression of BTL and cancer stratified
by time between BTL measurement and diagnosis/censoring (≤4, 4–8
and N8 years).

All multivariable models adjusted for age at baseline, race,
education, BMI, smoking status, pack-years of smoking, and alcohol
consumption. For ease of tabular presentation, continuous variables
were categorized into tertiles but retained in continuous form for all
analyses. We examined the effect of adjusting for white blood cell
count and proportion neutrophils, but including these variables did
not appreciably affect our results, prompting their exclusion. We also
excluded participants missing any data for outcome, BTL, or covariates.
Figures were generated using R v3.0.2 and all other analyses used SAS
(version 9.3, SAS Institute). We used two-sided tests to compare
means and BTL attrition rates, and set a statistical significance threshold
of p = 0.05.
2.5. Funding Source

This studywas funded by the Epidemiology Research and Information
Center, U.S. Department of Veterans Affairs; NIEHS R01-ES015172. Addi-
tional funding support was provided by the Northwestern University
Robert H. Lurie Comprehensive Cancer Center Rosenberg Research
Fund. The funding institutions had no role in the study design, data
collection or analysis, interpretation of findings, manuscript preparation,
or decision to pursue peer-review publication.



Table 1
Characteristics of study participants free of cancer at baseline by follow-up visit.

First visit Second visit Third visit Fourth visit

Mean ± SD/n (%)

N 579 371 226 77

Mean BTL (units) 1.26 ± 0.48 1.24 ± 0.56 1.04 ± 0.45 0.86 ± 0.25
Age (years) 71.82 ± 6.80 74.20 ± 6.32 76.72 ± 6.23 77.23 ± 5.24
BMI (kg/m2) 28.26 ± 4.14 28.20 ± 4.26 27.82 ± 4.17 27.79 ± 4.07
Pack-years of
smoking

20.87 ± 24.17 19.97 ± 24.19 18.41 ± 22.71 13.81 ± 18.58

Race
White 553(95.5%) 351(94.6%) 211(93.4%) 72(93.5%)
Non-White 26(4.5%) 20(5.4%) 15(6.6%) 5(6.5%)

Education (years)
b13 201(34.7%) 126(34.0%) 72(31.9%) 25(32.5%)
13–15 95(16.4%) 59(16.0%) 36(15.9%) 14(18.2%)
N15 283(48.9%) 186(50.1%) 118(52.2%) 38(49.4%)

Smoking status
Never 159(27.5%) 104(28.0%) 73(32.3%) 29(37.7%)
Current 26(4.5%) 15(4.0%) 6(2.7%) 2(2.6%)
Former 394(68.1%) 252(67.9%) 147(65.0%) 46(59.7%)

Average alcohol consumption
0–1 drinks/day 475(82.0%) 305(82.2%) 191(84.5%) 65(84.4%)
2+ drinks/day 104(18.0%) 66(17.8%) 35(15.5%) 12(15.6%)
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3. Results

Characteristics of study participants were similar to previous reports
(Zhu et al., 2011). Participants were male, with mean age of 72 at base-
line (range 55–100), and mostly white (535/579 or 95.5%). BTL
decreased over time among participants free of cancer at baseline,
from mean BTL of 1.26 ± 0.48 units at baseline to 0.86 ± 0.25 units at
the fourth visit (Table 1). See Supplemental Fig. 1 for a spaghetti plot
of individual participants' BTL trajectory across the study. We found
no significant associations between BTL and prevalent cancers (data
available upon request).
Table 2
Cumulative mean BTL of participants free of cancer throughout the follow-up period.

Characteristics at baseline n Cum. Mean p

Total 444 1.19⁎

Age, years⁎⁎

b69 143 1.19 0.010⁎⁎⁎
69–76 154 1.13
N76 147 1.11

BMI, kg/m2⁎⁎

b26.3 147 1.26 0.14
26.3\\29.5 147 1.25
N29.5 150 1.21

Pack-years of smoking⁎⁎

0 113 1.27 0.64
0.1–30 185 1.24
N30 134 1.24

Race
White 423 1.16 0.017⁎⁎⁎

Non-White 21 1.33
Education, years

b13 166 1.26 0.007⁎⁎⁎

13–15 72 1.29
N15 206 1.18

Smoking status
Never 113 1.27 0.23
Current 20 1.14
Former 309 1.25

Average alcohol consumption
0–1 drinks/day 367 1.28 0.24
2+ drinks/day 77 1.23

⁎ Unadjusted value.
⁎⁎ p-values calculated based on continuous variables.
⁎⁎⁎ Statistically significant at p b 0.05.
In cancer-free participants, those who were older (p = 0.010),
better-educated (p = 0.007) and of white race (p = 0.017) tended to
have shorter BTL (Table 2). Participants with an incident cancer diagno-
sis had accelerated BTL attrition as measured in pre-diagnostic blood
draws (β=−0.022 units/year, p b 0.001) compared to cancer-free par-
ticipants (β = −0.010 units/year, p b 0.001). The unadjusted mean
between-group difference in BTL attrition rate was −0.012 units/year
(p=0.032) (Fig. 1). These resultswere similar after adjusting for covar-
iates, with BTL attrition rate of −0.022 in participants with incident
cancer, −0.011 units/year in cancer-free participants, and a mean
between-group difference of−0.013 units/year (p = 0.017).

This trend in age-related BTL attrition reversed when it was
examined relative to time to diagnosis/censoring. While age-adjusted
attrition of BTL in participants who later developed cancer and those
who did not was comparable 8–14 years pre-diagnosis, attrition rates
in these two groups began to diverge starting seven years pre-
diagnosis (ptrend b 0.001). This led to significantly longer mean BTL
among participants with cancer compared to cancer-free participants at
four (β = 0.25 units/year, p = 0.012) and three (β = 0.31 units/year,
p = 0.003) years pre-diagnosis/censoring (Fig. 2).

Time-dependent BTL was positively associated with risk of develop-
ing prostate cancer (HR=1.79, 95% CI: 1.14–2.80, p=0.011) (Table 3).
Based on the results in Fig. 2, we performed a stratified analysis by years
pre-diagnosis/censoring. BTL measured within four years pre-
diagnosis/censoring was positively associated with incidence of all
cancers (OR = 3.27, 95% CI: 1.67–6.42; p = 0.0006), prostate cancer
(OR = 6.87, 95% CI: 2.73–17.25; p = 0.0001), and other cancers
(OR = 2.17, 95% CI: 1.02–4.59; p = 0.043).

4. Discussion

After confirming the expected age-related BTL attrition, we found
that cancer-free participants whowere younger, nonwhite, and less ed-
ucated tended to have longer mean BTL. Furthermore, age-related BTL
attrition was accelerated among participants who ultimately developed
cancer. Strikingly, this trend reversed when age-adjusted BTL was ex-
amined relative to time to diagnosis/censoring. We observed compara-
ble age-adjusted BTLs 8–14 years pre-diagnosis between participants
who ultimately developed cancer and those who did not, followed by
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a divergence of each group's mean age-adjusted BTL beginning seven
years pre-diagnosis and culminating in significant higher BTL
3–4 years pre-diagnosis among cancer cases compared to cancer-free
participants. Time-dependent BTL was positively associated with pros-
tate cancer risk but not with risk of all cancers combined. However,
BTL measured within four years of diagnosis was significantly associat-
ed with increased risk of all cancers combined and of prostate cancer.

Telomere length in prostate tissue decreases with cell division by
~100 base pairs per division due to incomplete replication (Meeker,
2006). Due to their high guanine content, telomeres are sensitive to
damage from cumulative oxidative stress and chronic inflammation,
resulting in telomeric single-strand breaks and loss of distal telomere
fragments (Jennings et al., 2000; von Zglinicki, 2002). Thus, telomere
attrition can serve as a marker of these major carcinogenic pathways.
Conversely, promoting healthy behavior may serve to increase telome-
rase activity and telomere maintenance capacity, as shown in one pilot
study (Ornish et al., 2008). In our study, we observed accelerated short-
ening of pre-diagnostic BTL in those who ultimately developed cancer
as they age, suggesting that one mechanism by which cancer risk
Table 3
BTL over time and risk of cancer.

Full follow-up (1999–2012) Stratified by interval betw

≤4 years

HR(95% CI) p OR(95% CI)

Unadjusted results
All cancer 1.17(0.83–1.65) 0.37 4.33(2.28–8.22)
Prostate cancer 1.89(1.08–3.31) 0.026⁎ 6.44(2.79–14.88)
Other cancer 0.85(0.55–1.33) 0.48 2.98(1.48–5.98)

Multivariable-adjusted results
All cancer 1.17 (0.83–1.65) 0.36 3.27 (1.67–6.42)
Prostate cancer 1.89 (1.08–3.33) 0.026⁎ 6.87 (2.73–17.25)
Other cancer 0.86 (0.55–1.35) 0.51 2.17 (1.02–4.59)

⁎ Statistically significant at p b 0.05.
increases may be telomere shortening prior to cancer development.
Alternatively, this acceleration in pre-diagnostic BTL attrition may be
an early result of cancer development.

The divergence in age-adjusted BTL trajectory between participants
who later developed cancer and those who did not several years pre-
diagnosis is intriguing. This may reflect pre-diagnostic cancer, and ex-
plain previous inconsistent results in prospective studies of BTL and
cancer. In particular, this suggests that the inconsistency may at least
partially be caused by differences in sample collection time relative to
cancer development and diagnosis. BTL maintenance is a complex
process governed by a variety of telomere elongating and shortening
processes, and BTL measurements are the result of balancing these
processes. While telomere attrition can be accelerated by increased ox-
idative stress and inflammatory events (Jennings et al., 2000; von
Zglinicki, 2002), telomere lengthening can occur when maintenance
mechanisms are activated by critical BTL shortening, cancer develop-
ment and treatment, etc. (Unryn et al., 2006) As cancer upsets this
balance early in its development, the timing of BTL measurement
relative to cancer's hijacking of telomere maintenance mechanisms
een BTL measurement and cancer diagnosis/censoring

4–8 years N8 years

p OR(95% CI) p OR(95% CI) p

0.0001⁎ 1.13(0.85–1.50) 0.40 0.72(0.30–1.72) 0.46
b0.0001⁎ 1.17(0.82–1.68) 0.38 0.41(0.09–1.94) 0.26
0.002⁎ 1.08(0.78–1.50) 0.64 0.95(0.34–2.61) 0.92

0.0006⁎ 1.03 (0.72–1.49) 0.86 0.56 (0.23–1.39) 0.21
0.0001⁎ 1.13 (0.72–1.79) 0.59 0.37 (0.08–1.84) 0.23
0.043⁎ 1.03 (0.67–1.58) 0.90 0.71 (0•24–2.06) 0.52



595L. Hou et al. / EBioMedicine 2 (2015) 591–596
may qualitatively affect the direction of any statistical associations
calculated. In future studies of BTL and cancer risk, care should be
taken to account for the timing of sample collection and BTL measure-
ment relative to cancer development and diagnosis.

Although the role of BTL maintenance mechanisms in surrogate
tissues like blood leukocytes remains largely unexplored in cancer
patients, it is biologically plausible that critical BTL shortening (via age
or increased oxidative stress or inflammation) may trigger telomere
maintenance mechanisms to protect telomere integrity (Hodes et al.,
2002). Our observation of decelerating age-adjusted BTL attrition in
cancer cases as they approached diagnosis suggests that telomere-
elongating mechanisms in blood leukocytes may also be activated by
cancer initiation, leading to BTL elongation early during cancer develop-
ment. In cancer tissues, this can occur via up-regulation of telomerase
(Hackett and Greider, 2002; Shay et al., 2001) or other methods for
lengthening telomeres after apoptosis would normally occur (Bryan
et al., 1995). This finding confirms that cellular senescence induced by
telomere shortening is a tumor suppressive process that must be over-
come early in carcinogenesis (Giaimo and d'Adda di Fagagna, 2012),
since ordinarily telomere length serves as an index of DNA repair poten-
tial and hematopoietic stem cell reserves (Aviv and Levy, 2012; Sidorov
et al., 2009). Future studies to confirm these processes in blood leuko-
cytes will facilitate the development of BTL (telomerase expression)
(Lu et al., 2011) as a potential biomarker for early detection of cancer.

Telomere integrity is primarily maintained by telomerase, which
catalyzes the synthesis of telomere repeats and adds telomere
sequences onto chromosome ends (Hug and Lingner, 2006). Prior stud-
ies have reported that tumor and somatic cells with more frequent re-
productive cycles, like leukocytes, have higher telomerase activity
(Sampedro Camarena et al., 2007). Synthesis of telomere repeats by
telomerase is believed necessary for the indefinite proliferation of
tumor cells and growth, and telomerase activation significantly
increases cellular lifespan and promotes carcinogenesis with multiple
accelerated neoplasia (DePinho, 2000). This may explain our observed
stabilization of age-adjusted BTL in cancer cases four years and less
pre-diagnosis, and our finding elongated telomeres in prostate cancer
patients. This result, coupled with our finding of accelerated age-
related BTL shortening in cancer cases, suggests a complex and dynamic
relationship between developing cancers and BTL. Biologically, thismay
be due to early carcinogenesis causing accelerated BTL shortening,
followed by a hijacking of telomere elongation mechanisms by cancer
at some point in its development.

In the present study, overall greater BTL measured 1–4 times over
the 12-year follow-up was positively associated with risk of developing
prostate cancer. Previous studies on the association between BTL and
prostate cancer have been inconsistent (Meeker, 2006; Meeker et al.,
2002; Mirabello et al., 2009; Hurwitz et al., 2014). The differences in
results may be at least partially due to differences in study design and
timing of blood sample collection. However, a recent and large prospec-
tive cohort study found a marginally significant reduction in the risk of
developing prostate cancer associatedwith shorter BTL (Weischer et al.,
2013). This is consistent with our findings regarding prostate cancer,
though given our low number of prostate cancer cases the possibility
of our finding being due to random chance (and/or our risk estimates
being inflated) should not be ignored. However, other studies have
also begun to examine the BTL–prostate cancer association by taking
into account blood collection time relative to cancer diagnosis.
Mirabello et al. reported in a prospective study that BTL measured in
blood samples collected 3 or fewer years prior to diagnosis was not
associated with prostate cancer risk (Mirabello et al., 2009). In a
retrospective study, Hurwitz et al. showed that shorter BTL measured
pre-diagnosis or within one year of cancer diagnosis was associated
with increased risk of prostate cancer in the Hereditary Prostate Cancer
(HPC) Families Project (Hurwitz et al., 2014). Our reported association
between prostate cancer risk and BTLmeasured within four years of di-
agnosis adds to this contradiction, and suggests that future studies
should examine prostate cancers inmore detail with repeatedmeasure-
ments of BTL pre-diagnosis.

Time-dependent BTL was only associated with prostate cancer.
However, our analyses stratified by timing of BTL measurement relative
to cancer diagnosis found associations between both all incident cancers
and prostate cancer, and longer BTL measured ≤4 years pre-diagnosis.
This suggests (as above) that BTL attrition acts as a tumor suppressive
process that must be overcome early in carcinogenesis. Interestingly,
one longitudinal study of telomere length and cancer development
(albeit a cancerous complication of lymphoma treatment) found a
similar temporal pattern,with increasing BTL in cases before and imme-
diately (100 days) after treatment, followed by accelerated telomere
attrition in cancer cases compared to controls (Chakraborty et al.,
2009). The complexity of the relationship between BTL attrition and
cancer incidence found here is also similar to that reported in our previ-
ous study of BTL and air pollution,where short-term pollution exposure
increased BTL but long-term exposure decreased it (Hou et al., 2012b).
This underscores the complex “give and take” at the heart of telomere
regulation, and reiterates the importance of timing BTL collection
relative to diagnosis (and potentially exposure and treatment).

Our study's longitudinal nature enabled us to establish temporal
associations between BTL and cancer risk usingmultiple measurements
in relation to cancer incidence. However, our findings should be con-
firmed in future studies. Our prospective measurement of BTL helped
avoid biases often encountered in cross-sectional studies. However,
there were also limitations in our study. Our study participants were
all male and mostly Caucasian, thus studies of females and non-
Caucasians are warranted to confirm our findings more broadly. Our
sample size limited our ability to analyze specific cancer subtypes
other than prostate cancer. Thus, caution should be exercised in
interpreting our results as different cancer subtypes have different
biological mechanisms, and our low sample size increases the possibil-
ity of our findings being due to random chance and/or our measures
of association being artificially high. Future, larger studies of multiple
cancer subtypes are necessary to help confirm the value of BTL as a
universal cancer biomarker.

In summary, BTL declined with age in both cancer-free participants
and cancer cases but more rapidly among the latter. However, relative
to approaching cancer diagnosis, age-adjusted BTL attrition decelerated
in cancer cases, ultimately yielding significantly elongated BTL and sug-
gesting that critical BTL shortening may contribute to cancer initiation
which then, in turn, activates telomere maintenance mechanisms to
compensate and further promote cancer. Thus, our results may help
explain the inconsistent results of previous studies and provide more
insight into using BTL as an early detection biomarker of cancer.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.ebiom.2015.04.008.
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